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I. Overview of Microarray Data Analysis

A. Introduction:

In a single assay, DNA microarrays allow researchers to analyze the mRNA expression
levels of thousands genes, and consequently, detect global changes in the transcription of a
genome.  These chips, however, produce unprecedented amounts of data that scientists must
analyze for both biological and statistical significance.  Three of the most common methods for
organizing the data are: (1) Hierarchical Clustering; (2) Self-Organizing Maps (SOMs); and (3)
Support Vector Machine (SVMs).  Hierarchical clustering efficiently organizes groups of genes
into sets, but the other two methods, SOMs and SVMs, better identify changes in patterns of
expression over a time period.  After explaining a common protocol for generating data using a
DNA microarray, this paper describes the three major data analysis techniques.  It then critically
analyzes which of these three methods is best in certain applications of breast cancer research,
and finally, suggests a novel method to improve support vector machines when used in the gene
expression pattern analysis of tissues treated with various chemotherapies.

Many microarray experiments study the alterations in expression patterns over a period of
time following a stimulus to the cellular environment.  A common method for obtaining
microarray data is as follows: RNA from experimental cells is removed at, for example, the
different sequential time points, and then reverse transcribed in the presence of the fluorescent
dye Cy5.  A reference sample, such as one taken at time 0, is also reverse transcribed but in the
presence of Cy3, and subsequently mixed with the experimental samples containing the Cy5 dye.
Following hybridization of these samples to the DNA microarray, the Cy5/Cy3 ratio of each spot
is measured, with the ratio being expressed as a log odds ratio in the base 2.  The color red
denotes over-expression of a gene relative to the control state, green signifies under-expression,
and black indicates no change in which case the log ratio is 0 as the Cy5/Cy3 ratio is 1 (equal
absolute expression during experimental and control states).1  These ratios are entered into an
“expression matrix” where each row represents a different gene and each column is a single
experiment (i.e. a different moment in time after administration of a compound).  However, the
generated matrix comparing gene expression and experiments lacks organization.  Consequently,
the three data analysis methods all aim to reorganize this matrix in order to improve the
presentation of the information and emphasize specific patterns of gene expression.  The first
two methods, hierarchical clustering and SOMs lack the presence of a teacher signal and are thus
unsupervised methods, whereas SVMs describes a supervised method.2

B. Data Analysis Techniques:

1. Hierarchical Clustering3

This technique clusters genes with similar expression vectors.4  The first step builds a
matrix comparing all genes to one another. 4  One option is to compute a matrix containing the
distances between expression vectors.  In terms of “expression space,” each experiment is a new
axis in space, with the log2(ratio) of that gene in that experiment serving as the geometric
coordinate.  In other words, following the addition of a compound, one extracts the mRNA at
time 0mins, 5mins, and 10mins, and the x-coordinate is the log2(ratio) at time 0, the y-coordinate
is the log2(ratio) at time 5mins, and the z-coordinate is the log2(ratio) at time 10mins.  Each gene
consequently has its own expression vector (point in space).  Genes with similar vectors are close
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together, whereas those with different patterns are far apart. 4  It is then possible to calculate the
distance between points in order to determine their “mathematical similarity.” A Euclidean
distance is the most common metric distance: if xi and yi are the expression values for genes X

and Y in experiment i and there is a total of n experiments: Â
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the Euclidean distance, however, is only one of many ways to measure the mathematical
similarity between expression vectors. The paper by Eisen et al. instead computed a matrix of
correlation coefficients (such as the dot product of two normalized vectors).  For two genes, x
and y  and a total of n  experiments, their similarity score is computed by the
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deviations.3  The authors suggest that the standard correlation coefficient better fits the biological
notion of coexpression as this statistic describes similarity in
“shape” but deemphasizes the idea of magnitude between the
measurements.3  After obtaining a matrix that represents the
mathematical similarity between genes, hierarchical clustering
then proceeds to build a dendrogram assembling all elements
into a single tree.3  An overview of this process is as follows: a
program searches the distance matrix for the two most similar
(or different) genes/clusters.  The two selected clusters merge
together, and the distances between the new cluster and all
other clusters are recalculated.  This process continues until all
clusters are merged into one.  Again, there are many possible
methods to build this tree including: (A) Single-linkage
clustering in which a program calculates the distance between
two clusters by determining the minimum distance between
two members of each cluster, in other words, the nearest
neighbor method. (B) Complete-linkage clustering in which a
program calculates the distance between two clusters
determining the farthest distance between two members of
each cluster.  It tends to produce compact clusters of similar
size.  (C) Average-linkage clustering in which a program
calculates distance by averaging values (UPGMA).  The
distances between all members in a cluster are first averaged,
and then the distances between all clusters are examined.  The
clusters having the lowest distance scores are joined.  (D).

Weighted pair-group average is similar to average-linking but
the size of each cluster is used to weight the distances, and is
consequently best when there is an expectation for cluster

sizes to be uneven.4

Eisen et al. use the last method listed.  First an upper-diagonal similarity matrix
containing the similarity scores for the pair of genes is computed.  A computer program scans the
matrix in order to identify the highest correlation coefficients.  It then creates a node joining the

Figure 1: Example of
Hierarchical Clustering taken
from Eisen et al.3
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two genes and computes a gene expression profile for that node by averaging the values of the
observations (weighing values by the number of genes each cluster already contains).3  The
matrix is constantly updated a total on n-1 times until a single element remains.  The programs
TREEVIEW AND CLUSTER implement this algorithm.

Two major problems with hierarchical clustering are: (1) as the elements within a cluster
increase, the expression vector computed for that cluster may become unrepresentative of the
elements it contains.  Consequently, the patterns of expression themselves, loose their
importance.  (2) A mistake, or poor assignment early on, is irrevocable. 1,4  Further, using
different clustering methods can yield dissimilar trees.  Without additional biological
information, however, any order can be considered “correct.”4 Thus, hierarchical clustering is
perhaps best for applications of true hierarchical descent (i.e. evolution) and not for cases
examining gene expression patterns in a mutated or experimental situation.
 An improvement to hierarchical clustering is k means clustering which can be used when
the researcher knows the total number of clusters the program should create.4  The result is a
series of k clusters internally similar but externally divergent.  Basically, all expression profiles
are initially randomly assigned to one of the k clusters.  The program then computes an average
expression vector for each cluster and between clusters.  A recursive algorithm then methodically
chooses expression vectors, and after calculating the intra and inter distances, moving the vector
only if the selected cluster is more similar to the point than the original one.  Finally, following
the move, the average expression profile for each cluster is recalculated.4  K means clustering
allows biological knowledge to be integrated into the clustering method, but scientists must still
judge if in fact these classes are significantly distinct.

2. Self-Organizing Maps5

SOMs, a neural network based
clustering system, are better designed for
explanatory data analysis as they allow one to
partition the data based upon similar expression
patterns.4  Similarly to k means clustering,
however, the user must be able to specify the
number of desired clusters.  First, the user
chooses a geometric configuration for the nodes
in two dimensions.  These nodes are then
arranged randomly in n dimensional space and
recursively adjusted.  The nodes next migrate to
fit the data points.  At each iteration, a data
point P is randomly selected, and the node
closest to that data point, Np, is moved most,
while the other nodes are proportionally
adjusted depending upon their distance to Np in
the initial geometry.  Tamayo et al. describe the
algorithm (implemented by the program GENECLUSTER) as follows: a distance function
d(N1,N2) relates each node to one another, and the position of each node at iteration i is denoted
by fi(N).  The initial mapping [f0(N)] is random and at each iteration the node closest to the
selected point P is identified, and all nodes then move by the algorithm
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Figure 2: The Tamayo et al. description of the
principles behind a Self Organizing Map. 5
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iteration, and is defined as )100/(02.0),( iTTix +=t .5  In other words, the new position of each

node depends upon its initial position, its distance from the node closest to the point, and its
subsequent distance from the point.

3. Support Vector Machines2

SVMs are a binary classification method that discriminate one set of data points from
another.1  Using previous information obtained about gene expression, the SVM learns the
expression features for a specific class and then classifies genes based upon their expression
patterns as either included in class or excluded from it.4  As the SVM learns to distinguish
between class members and outliers, an optimal hyperplane is drawn to divide these points.  In
real world data, however, it is often difficult to clearly discriminate between positive and
negative examples.  SVMs solve this problem mapping the data points into a higher-dimensional
space called the ‘feature space’ instead of into the ‘input space’ where one finds the training
examples.4 The feature space is so named because one
calls each entry in the expression vector a feature.18

Furthermore, algorithms determining the hyperplane in
the feature space can be expressed exclusively in terms
of vectors in the input space and dot products in the
feature space.  Consequently, the SVMs, by defining a
‘kernel function’ that assumes the role of the dot
product in the feature space, can identify the
hyperplane without ever having to actually represent
the feature space.2   As Eisen et al. also noted (see
section on hierarchical clustering), the dot product of
two normalized vectors is the simplest way to measure
the similarity in expression vectors between two genes:
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function for technical reasons, see reference).  By
raising the kernel function to a higher power, d, one obtains a hyperplane of higher degrees in the
input space, and for any gene, there now exist d-fold interactions between RNA measurements in
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correlations within gene expression measurements.2  Brown et al. explored kernel functions
raised to the power d=1, 2, and 3.  In the event that a SVM is unable to create an effective
separating hyperplane, one usually also implements a ‘soft margin’ that allows some training
examples to be misclassified.  One technique for introducing the soft margin (controlling the
trade-off between false positives and negatives) is to replace the kernel matrix, K(X,Y) with K +
lD.  l, the diagonal factor, controls the training error and the risk of misclassification decreases
with appropriate choices of l.  D, a diagonal matrix, contains entries that are either d+ or d-

depending on their correspondence to positive and negative examples.6  Although the higher
level math is omitted from this paper, ai when associated with the training point xi, expresses the
strength of the correlation with which the training point is rooted in the final decision function.6

The above replacement allows one to control the value of ai in a way that is proportional to the
size of the class.  Classes with smaller d are kept further away from the decision boundary.

Figure 3: Support Vector Machine in
which a hyperplane separates the positive
data points (red) from the negative points
(purple).  Imagine reproduced from
Mount, p. 522.1
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Researchers must thus specify not only the kernel function, but also the penalty for violating the
soft margin.

To obtain the feature selection criteria, studies by Furey et al.  used the following
methods:  The goal is to locate which genes have expression vectors that the researcher can use
to differentiate between two classes.   Samples are labeled Y _ {+1, -1} (i.e. cancer and normal),
and for each gene xj, the mean +

jm  ( -
jm ) and standard deviation +

js ( -
js ) are calculated.  A

score, F(xj), is then assigned to each gene.  The highest scores are for genes having expression
levels that differ most on average in the two classes, while preference also goes to genes having

small score deviations in their respective classes: 
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F(xj) scores are selected as top features.  In sum, the entire SVM method can be summarized as
follows: (1) choose kernel function; (2) adjust kernel function by changing the diagonal factor
(soft margin); and (3) train the SVM to classify unknown samples using the genes selected in a
“hold-one out procedure.” In other words, train the SVM with all but one of the samples and then
use the SVM to classify the held out sample.  This process is repeated until all samples are held
out once.6

Finally, the SVM software is available by downloading the GIST package from
Columbia University.18  The SVM program takes three files as inputs, train <filename> (the list
of training examples), class <filename> (specified classifications for the training examples), and
test <filename> (the to be classified data).  It outputs two files, a weights file containing the
weight of each training set example, and a prediction file with the predicted classification of the
test set.  Examples of these files are listed below and taken from: http://svm.sdsc.edu/svm-
io.html 18

train <filename>
corner     feature_1  feature_2  feature_3  feature_4
example_1   -0.9      -3.9       -3.1        0.7
example_2    2.1       1.1        0.3       -1.6
example_3    3.5       2.0       -0.3        3.1
example_4   -2.3      -0.4       -0.4       -0.1

class <filename> test <filename>
corner    class  corner     feature_1  feature_2  feature_3  feature_4
example_1  -1 example_11     0.3        0.3       -2.2    -0.1
example_2   1 example_12    -1.9       -1.8        0.5     2.6
example_3   1 example_13    -1.0        3.0        2.1    -0.1
example_4  -1

output weights file
corner      class  weight train_classification train_discriminant
example_1     -1      -0          -1              -2.341
example_2      1  0.1321           1              0.9991
example_3      1       0           1                1.83
example_4     -1      -0          -1              -1.058
example_5     -1  -0.09971        -1                  -1

output predicted classification
corner      classification   discriminant
example_11       -1           -0.03785
example_12        1            0.0522
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example_13       -1           -0.08235

GIST uses the following programs to train the SVM and perform the classification of the
test set: COMPUTE-WEIGHTS uses the iterative update procedure (first described by Jaakkola,
Diekhans, and Haussler) to train a support vector machine.  Inputs include: (1) train <filename>:
the file of training examples in which the first column contains the example names and the
subsequent columns contain the gene expression levels in each experiment. (2) class <filename>:
the file which classifies the training set into the positive (+1) or negative category (-1).  Again,
the first column contains example names and subsequent columns contain the binary
classification.  The number of elements must be the same in each of the first two files.  The
output is the weights file containing five columns: (1) example name; (2) class; (3) learned
weights for each example [non-zero weights are given to training examples considered “support
vectors” (the point lies near to the inside/outside of the separating hyperplane determined by the
SVM algorithm)]; (4) predicted (train) classification; and (5) corresponding discriminate value
(determined by calculating proportional distance between example and hyperplane).  CLASSIFY
uses the trained SVM to classify an unlabeled set of vectors.  Inputs are: (1) the train <filename>
from above; (2) learned <filename> which is the output file from COMPUTE-WEIGHTS, and the
kernel function parameters are read from the header of this file; and (3) test <filename>
containing the test set to be classified.  Output includes 1 file with three columns containing (1)
test set names; (2) binary classification(1, -1); and (3) discriminants.  KERNEL-PCA for the set of
training examples, performs the kernel principal component analysis by computing kernel-based
eigenvectors.  It uses the train <filename> as an input, and returns a matrix in which columns
correspond to eigenvectors as the output.  PROJECT inputs are the same as CLASSIFY, and the
output includes a matrix in which the test data has been projected onto the given set of
eigenvectors

Additionally, there are a few auxiliary programs that help to manage the data: FSELECT
uses a specified measure for feature quality to select features from a given data set.  RDB-
MATRIX manipulates rows and columns in a specified matrix.  SCORE-SVM-RESULTS takes the
outputs from COMPUTE-WEIGHTS and CLASSIFY and performs statistical analysis.  It calculates
the number of false positives, false negatives, true positives, and true negatives in both the
training set and the experimental set, as well as an ROC score which is determined by calculating
the area under the curve that plots true positives as a function of false positives for differing
decision thresholds (perfect scores correspond to 1.0).  FIT-SIGMOID converts the COMPUTE-
WEIGHTS discriminant values into probabilities, and finally, GIST3HTML converts GIST output
files into HTML format. 18

GIST was written by William Stafford Noble from the Columbia University computer
science department and by Paul Pavlidis of the Columbia Genome Center.

II. Microarray Applications in Breast Cancer Research:

A. Background Information:

To date, the molecular basis of breast tumorigenesis is poorly understood.7  Extreme
genetic heterogeneity exists in breast cancers, and no single genetic mutation induces all forms
of this disease.  Tumors consequently can have differing clinical outcomes and reactions to
therapies.  The advent of DNA microarrays allows much of the current research in this field to
focus on “expression profiling” in which genes are analyzed according to similar expression
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patterns.  Microarrays permit genome wide comparisons of tumors having, for example,
mutations in the BRCA1 and BRCA2 genes.  It is thus now possible for scientists to distinguish
characteristics specific to each form of breast cancer and develop better diagnostic, prognostic,
and therapeutic techniques.  Despite some overlap, two main avenues in breast cancer research
exist: (1) Issues related to the specific functioning of the disease; and (2) general diagnostic and
classification studies.  The first uses arrays to better understand the functioning of oncogenesis.
Such studies can uncover novel genes and regulatory pathways via comparison of expression
profiles in the stages leading from normal to metastic conditions.8  Scientists may focus on a
specific mechanism by either over expressing a gene, such as BRCA1,9 or under expressing one,
such as p53.10  The other major research area examines methods for tumor classification in order
to better categorize patients and guide them toward the most appropriate treatments.  The
specific question being studied, however, often dictates the most appropriate data analysis
method (HC, SOMs, or SVMs).  The supervised methods are by nature predictive, whereas the
unsupervised methods simply reduce the complexity of the data and allows the naked eye to
observe common structures.8

The remainder of this paper examines which data analysis methods are best for studying
survival outcomes of patients receiving various chemotherapies.  Adjuvant anthracyclin-based
chemotherapy, for example, has a 40% failure rate, and with the increasing availability of novel
therapies, physicians wish to know from which treatments each patient will most benefit.8

Although risks of distant metastases can diminish by one third when physicians treat patients
with hormonal therapies or chemotherapies, approximately 70-80% would have survived
anyway.11  By using microarrays to discriminate between patients with positive and negative
prognosis, scientist can not only refine the prognostic classification of breast cancer, but also
better understand the mechanisms of these therapies thereby providing novel targets for future
research.  This information would also allow the possibility for patient-tailored therapy
strategies.

Many outcome predictions studies use clustering methods to organize the microarray
data.  This technique, however, may be inappropriate given the goal of these studies.  When a
project aims to distinguish specimens such that expression profiles are similar within groups and
different between groups, then clustering methods are useful.  If, however, the samples already
come from known prespecified groups, then the goal (as in the case of comparative
chemotherapy studies) is usually to identify differently expressed genes or global differences
between groups.12  Korn et al., using another form of statistical analysis (the step down
permutation approach),19 revisited data that was first analyzed using hierarchical programs
(Perou et al.13) to discover 17 genes for which the original authors failed to account.12  Analysis
of these 17 genes helps provide biological incite into the responses of tumors to doxorubicin
treatment.  Thus, although clustering methods highlight possible relationships between genes,
they give no absolute answers and can miss vital changes in expression patterns.  Furey et al.
have already begun to apply support vector machines to classify cancer tissues.  The remainder
of this paper examines the progress in the SVM-breast cancer field and suggests possible
improvements to SVMs that analyze tissues between patients receiving different forms of
chemotherapy.

B. Supervised Clustering Methods for Analysis of Changes in Gene Expression Patterns:

1. Current Research
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van't Veer et al. used a combination of supervised and unsupervised methods in their study of
gene expression profiles to predict clinical outcomes of breast cancer patients.14  Clustering
methods effectively distinguished between ‘good prognosis’ and ‘poor prognosis’ tumors.
However, in order to analyze specific genes with differing gene expression profiles between the
two groups, the authors utilized supervised classification methods instead.  A correlation
coefficient comparing the expression of each gene with disease outcome was calculated for 5,000
(of 25,000) genes.  231 were found to be statistically significant, and the program created a rank
ordered list.  To optimize the number genes in the “prognosis classifier,” subsets of 5 genes were
sequentially added from top to bottom of the rank list.  The authors implemented the ‘leave-one-
out’ method to determine the program’s ability to classify samples correctly, and the optimal
number of marker genes was 70.  By classifying genes via this method, researchers obtained a
better understanding of the biological mechanisms leading to rapid metastases.  Many of the
genes found in the poor prognosis classifier were involved in the cell cycle regulation,
angiogenesis, and signal transduction (i.e. cyclin E2, MCM6, metalloproteinases, and the BEGF
receptor FLT1).14  The authors make note that none of their 70 marker genes have been
previously emphasized in studies correlating changes in expression patterns with different
disease outcomes.  They explain this phenomena by stating how earlier clinical studies relied on
observing single genes in isolation, and thus emphasize the need multi-gene approach based
methods.

Although few studies have actually applied SVMs to breast cancer, Furey et al. have, applied
SVMs to analyzing ovarian cancer tissues, and it is possible replicate their methods for other
diseases.  SVMs can not only separate expression vector between classes, but can also identify
errors in previous classification data.

2. Suggestions
One of the major problems with a SVM used in the Furey et al. study was after

classifying genes into the positive group, in some cases, the machine gave high rankings to
biologically meaningless genes and failed to recognize known tumor genes.  Consequently, to
improve SVM functioning, additional methods for identifying and ranking important genes must
be devised.6  It thus seems that an additional stage is needed before the final output of data.  A
machine capable of not only dividing genes between classes, but also then able to go through the
sub classes and make associations between genes
within the positive class, would be valuable.

In their paper, Furey et al. give a figure
illustrating the SVM classification margins for
ovarian tissues.  During the classification process, the
SVM calculates a margin, or the distance of the
specific gene to the decision boundary.  The output,
however, lacks organization, and it is this data that
should be reorganized by the program before final
display.  To start, it might be helpful to implement a
hierarchical clustering method at this point in the
program.  Although SOMs are well designed for
identifying small numbers of important classes in a
data set,15 the user may not know in advance how
many clusters to expect.  Using clustering methods, one could thus identify genes with similar

Figure 4: SVM classification margins for
the positive sample of ovarian cancer
tissues (taken from Furey et al.) 6
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expression patterns in the positive category.   This method would also reorganize the data in
terms of similarities within member of the class, as opposed to ranking the data by similarity to
the training set.

One of the questions Golub et al. addressed in their study on cancer class discovery and
prediction was: if a sample has been partitioned into a positive and negative category, how can
one determine if in fact these clusters are correct if the “right answer” is not already known.  The
authors broached this question because they had used SOMs in order to classify cancer samples
into either the AML or ALL family, but the scenario is almost identical to that of SVMs.  After
the SVM has classified a sample as positive or negative based upon gene expression patterns,
how can one then determine if these samples are classified correctly?  Golub et al. suggest that
assuming the positive class reflects the “truth,” then building a new class predictor using the
members of that class should perform reasonably well.  Following this logic, it is even more
imperative that the data within the positive class of the SVM be well analyzed.  Continuously
analyzing and rebuilding a class predictor portfolio can only help to further the understanding of
this disease.

To modify the GIST program, for example, a logical place to insert this improvement is
in the SCORE-SVM-RESULTS auxiliary program.  A function would need to sort through the
CLASSIFY output matrix extracting the vectors with a positive classification and forming a new
matrix.  This new matrix, then, could be manipulated in order to find similarities among
expression patterns within members of the same class.

III. Conclusion

A variety of data analysis methods for DNA microarray currently exist.  Generally, the
data gathered from microarrays prompts two categories of questions: (1) those about variables
themselves, such as, which genes or clusters of genes are associated with a specific phenotype,
biological mechanism, or outcome; and (2) those regarding biological samples, such as, what
predictions can be made about a specific tissue (either for diagnostic and/or prognostic
reasons).16  Most statistical methods, including clustering, easily address the first question.
Pattern classifier, such as SVMs and other machine learning systems, however, are much better
for the second.  It is vital that the scientist use the most appropriate computational analysis
technique in order to extract the maximum amount of information from his sample.  In studies
examining different clinical outcomes of patients receiving a variety of chemotherapies, support
vector machines provide the most informative results.  These machines, however, still have
flaws.  It may be possible to improve these machines by using other data analysis techniques,
such as clustering, on a specified subsets of SVM data.
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